Ark Curriculum+

Week 2: Exploring decimals

Mathematics **Mastery**

Lesson 6: Fractions and decimals

 To read and write decimal numbers as fractions

Lesson 7: Thousandths

To recognise and use thousandths

Lesson 8: Comparing fractions and decimals

 To compare and order fractions and decimals

Lesson 9: Improper fractions

 To recognise and use mixed numbers and improper fractions

Lesson 10: Consolidation and review

See unit narrative (no slides provided)

Ark Curriculum+

Lesson 6: Fractions and decimals

Mathematics **Mastery**

Fractions on a number line

How many fractions can you place on the number line? Explain the reasons for your choices.

Tenths and hundredths

We are going to give Dienes new values.

If the largest block has a value of one, what are the values of the others? Why is that?

Tenths and hundredths

Ones	•	Tenths	Hundredths
	•		

Ones	Ten	ths	Hundredths

Ones		Tenths	Hundredths
	•		

Tenths and hundredths

$$\frac{3}{5} = \frac{10}{10}$$

$$\frac{1}{4} = \frac{1}{100}$$

Ones	•	Tenths	Hundredths

Fractions and decimals

Represent each fraction with Dienes blocks and record it as a decimal number.

$$\frac{21}{100}$$

Ones	•	Tenths	Hundredths

Decimals and fractions

$$\frac{1}{100}=\frac{}{20}$$

Key learning: To read and write decimal numbers as fractions

Decimals and fractions

	0.02	0.2	42 100	0.35	
53 100	2 10	1 5	200 1,000	21 50	0.24
2 100		0.42			24 100
1 50	20 100	$\frac{35}{100}$	0.53		7 20

Celebrating success and addressing misconceptions

 $0.2 \ \frac{1}{5} \ \frac{2}{10} \ \frac{20}{100} \ \frac{200}{1,000}$

Ark Curriculum+

Lesson 7: Thousandths

Mathematics **Mastery**

Equivalent fractions and decimals

Complete each statement. How many different ways can you complete each one?

$$\frac{4}{10} = -$$

$$\frac{9}{25} = -$$

$$\frac{7}{20} = -$$

$$\frac{45}{100} = -$$

Key learning: To recognise and use thousandths

hundredths

thousandths

Thousandths

1

Ones	•	Tenths	Hundredths
1	•		

 $\frac{1}{10}$

Ones	•	Tenths	Hundredths

Ones	Tenths	Hundredths

?

Thousandths

1

Ones	Tenths	Hundredths	Thousandths

 $\frac{1}{10}$

Ones	Tenths	Hundredths	Thousandths

Ones	Tenths	Hundredths	Thousandths

 $\frac{1}{1,000}$

Ones	•	Tenths	Hundredths	Thousandths
	•			

Thousandths, hundredths, tens and ones

$$\frac{?}{1,000} = \frac{1}{100}$$

____ thousandths is equal to one hundredth.

$$\frac{?}{1,000} = \frac{1}{10}$$

____ thousandths is equal to one tenth.

$$\frac{?}{1,000} = 1$$

____ thousandths is equal to one.

Representing thousandths

Ones	Tenths	Hundredths	Thousandths
0	•		

Representing thousandths

Represent your calculations with Dienes.

$$\frac{1}{10} + \frac{1}{100} + \frac{521}{1,000} = \frac{521}{1,000}$$

Ones	Tenths	Hundredths	Thousandths
0			

$$0. + 0. + 0. =$$

There are _____ tenths, ____ hundredths and one thousandth. The number is said as zero point _____.

Key learning: To recognise and use thousandths

Representing decimals

Ones	Tenths	Hundredths	Thousandths
0			

$$0. = +0.03 +$$

There are _____ tenths, ____ hundredths and one thousandth. The number is said as zero point _____.

Key learning: To recognise and use thousandths

Representing decimals

$$\frac{10}{10} + \frac{100}{100} + \frac{1000}{1000} = -$$

Ones	Tenths	Hundredths	Thousandths
0			

$$0. = + +$$

There are _____ tenths, ____ hundredths and ____ thousandths.

The number is said as zero point _____

I'm thinking of a number

I'm thinking of a number.

- It has a place holder in the ones and the tenths place
- It has four hundredths.
- It also contains the digit 2.

I'm thinking of a number.

- It has place holders in the ones and hundredths places.
- It has three thousandths.
- It also contains the digit 7.

I'm thinking of a number

I'm thinking of a number.

- It has a place holder in the ones and the tenths place
- It has four hundredths.
- It also contains the digit 2.

I'm thinking of a number.

- It has place holders in the ones and hundredths places.
- It has three thousandths.
- It also contains the digit 7.

0.042

42 1,000

I'm thinking of a number

I'm thinking of a number.

- It has a place holder in the ones and the tenths place
- It has four hundredths.
- It also contains the digit 2.

I'm thinking of a number.

- It has place holders in the ones and hundredths places.
- It has three thousandths.
- It also contains the digit 7.

0.042

 $\frac{42}{1,000}$

0.703

 $\frac{703}{1,000}$

Ark Curriculum+

Year 5 Unit 6: Fractions and decimals

Lesson 8: Comparing fractions and decimals

Mathematics **Mastery**

Statements of equality and inequality

Which of these symbols will make each statement correct? How do you know?

$$\begin{array}{c|c} 12 \\ \hline 32 \\ \hline \end{array}$$

$$\frac{81}{100} \boxed{\frac{4}{5}}$$

$$\begin{array}{|c|c|}\hline 8 \\ \hline 20 \\ \hline \end{array} \begin{array}{|c|c|}\hline 45 \\ \hline 100 \\ \hline \end{array}$$

Key learning: To compare and order fractions and decimals

number line

Ordering and comparing fractions and decimals

How many decimal numbers can you place on this number line?

3090999999

()

Ordering and comparing fractions and decimals

How many decimal numbers can you place on this number line?

We have zoomed in on this section of our first number line.

Ordering fractions and decimals

Place each decimal or fraction on a number line.

Which line will you choose for each?

0.75

 $\frac{3}{20}$

5 8

0.125

 $\frac{19}{100}$

0.65

Generate statements using (<), (=) or (>).

Fractions between fractions

- What fraction is exactly half way between zero and one quarter?
- What fraction is exactly half way between one quarter and two quarters?
- What do you notice? How else could you record these fractions?

Fractions between fractions

What do you notice? How else could you record these fractions?

Fractions between fractions

Show me that $\frac{3}{4}$ is exactly half way between $\frac{7}{10}$ and $\frac{4}{5}$.

Key learning: To recognise and use thousandths

Fractions between fractions

Label the number lines with fractions and decimals to show your understanding.

2) Which fraction is exactly half way between $\frac{1}{4}$ and $\frac{3}{8}$?

Sharing patterns

- What patterns did you notice?
- How many statements of equality can you generate?

How many statements of inequality can you generate?

Ark Curriculum+

Lesson 9: Improper fractions

Mathematics **Mastery**

Skip-counting in fractions and decimals

3

Counting in fractions:

2	21	22				3
$\overline{10}$	$\overline{100}$	$\overline{100}$				$\overline{10}$

Counting in decimals:

0.2
0.21
0.21
0.22
0.23

Skip-counting in fractions and decimals

Counting in fractions:

Counting in decimals:

Skip-counting in fractions and decimals

Counting in fractions:

Counting in decimals:

0.2
0.2
0.21
0.22
0.23

Key learning: To recognise and use mixed numbers and improper fractions

hundredths thousandths

Improper fractions and mixed numbers

If the white rod has length $\frac{1}{2}$, what are the lengths of the other rods?

Improper fractions and mixed numbers

If the yellow rod has length 1, what are the lengths of the other rods?

Representing improper fractions

If the red rod has length 1, what are the lengths of the other rods?

If the black rod has length $\frac{1}{4}$, what are the lengths of the other rods?

Record your answers as improper fractions, mixed numbers and decimal numbers.

Converting between improper fractions and mixed numbers

If the pink rod has length 1, what are the lengths of the other rods?

Convert between mixed numbers and improper fractions.

Converting between improper fractions and mixed numbers

Is each statement true or false? What strategies could you use?

$$\frac{18}{5}=3\frac{2}{5}$$

5.25

$$\frac{18}{5}$$
 $3\frac{2}{5}$

$$\frac{18}{5}$$

$$3\frac{2}{5} =$$

If a statement is false, change the symbol to make it correct and write two other statements of equality.

Key learning: To recognise and use mixed numbers and improper fractions

Improper fractions and mixed numbers

- Is each statement true or false? How do you know?
- If a statement is false, change the symbol to make it correct.
- What other statements can you generate?

$$\boxed{4.2 = \frac{20}{5}}$$

$$\begin{bmatrix} 33 \\ 6 \end{bmatrix} \equiv \begin{bmatrix} 5\frac{1}{2} \end{bmatrix}$$

$$3\frac{3}{5} = \frac{36}{10}$$

$$2.75 = \frac{20}{8}$$

I'm thinking of a number

I'm thinking of a number.

- It is greater than three.
- It is less than 3.25.
- It has three decimal places.
- It can be represented as $\frac{25}{8}$.

I'm thinking of a number

I'm thinking of a number.

- It is greater than three.
- It is less than 3.25.
- It has three decimal places.
- It can be represented as $\frac{25}{8}$.

3.125

