Chadsmead Primary Academy Calculation Policy

 September 2018

Teaching maths at Chadsmead Primary Academy

Vision and aims

We believe that every child can succeed and achieve in maths, regardless of background, their own perceptions (and those of others) and without imposed labels categorising their maths 'ability'. Our passion for the subject and intended success for all ensures that our learners grasp concepts through varied approaches that support calculation strategies through practical, oral and mental activities, utilising concrete apparatus and pictorial images to support ideas, and then the application of skills in real life contexts. As children begin to understand the underlying ideas they develop ways of recording to support their thinking and calculation methods, use particular methods that apply to special cases, and learn to interpret and use the signs and symbols involved. We equip learners with tools and strategies in order that they may select the most suitable approach for themselves when solving problems. Choosing the appropriate strategy, recording in mathematics (and in calculation in particular) is an important tool for furthering the understanding of ideas as well as communicating those ideas to others. A useful written method is one that helps children carry out a calculation that can be understood by others. Written methods are complementary to mental methods and should not be seen as separate from them. The aim is that learners learn to use mental methods when appropriate, but for calculations that they cannot do in their heads they use an efficient written method accurately and with confidence.

Learners reason and explain their thoughts when tackling problems, using high level mathematical language clearly to justify the approaches they select, the thought processes they go through, as well as the solutions they reach - in many instances 'the answer is only the beginning'. Problems are set, encouraging learners to draw on their calculations knowledge to test out ideas, make conjectures, to go up 'dead ends' and adjust their thinking, discussing ideas with others and being comfortable to take risks, understanding that the solution is not immediate.

We encourage our learners to accept and welcome mistakes as a step towards the eventual securing of knowledge and mastery in applying learned skills automatically in unfamiliar contexts. 'I'm nearly there' and 'I don't understand yet' are key thoughts throughout our learning journeys. We understand that children who answer everything correctly straight away must be adequately challenged further in order to achieve their full potential.

Daily maths meetings ensure basic skills, knowledge and language in key maths areas (number, calculations, measure, shape and space, data handling) are frequently revisited. This ensures learning remains current; a frequent 'use it or lose it' approach to knowledge. Repeated talk and application of calculation skills to support all maths areas embeds links across the whole subject.

At Chadsmead, staff have shared ownership of and responsibility for their Calculation policy. This ensures a consistent approach to the teaching and learning of mathematics.

ADDITION	ADDITION	ADDITION	ADDITION
Year 3	Year 4	Year 5	Year 6
Partition into tens and ones Partition both numbers and recombine. Count on by partitioning the second number only $\begin{aligned} & \text { e.g. } 247+125=247+100+20+5= \\ & 347+20+5=367+5=372 \end{aligned}$	Missing number/digit problems: Mental methods develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving.	Missing number/digit problems: Mental methods - continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving. Children should practise with increasingly large numbers to aid fluency e.g. $12462+2300=14762$	Missing number/digit problems: Mental methods - continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving. Written methods - As year 5, progressing to
Children need to be secure adding multiples of 100 and 10 to any three-digit number including those that are not multiples of 10 .	$\square ?$		larger numbers, aiming for both conceptual understanding and procedural fluency with
	Part Part	4-digits) As year 4, progressing when understanding of the expanded method is	columnar method to be secured.
Written methods - Introduce expanded column addition modelled with place value counters (Dienes could be used for those who need a less abstract representation)	Written methods - (progressing to 4-digits) Expanded column addition modelled with place value counters, progressing to calculations with 4 digit numbers.	columnar method for whole numbers and decimal numbers as an efficient written algorithm. $172.83+54.68=227.51$ Place value counters can be used alongside the	those with different numbers of decimal places. Use of Y4 place value counters for SEN as needed. Problem Solving ensure pupils have
A number line and expanded column method may be compared next to each other. Some children may begin to use a formal columnar algorithm, initially introduced alongside the expanded method. The formal method should be seen as a more streamlined version of the expanded method, not a new method.		columnar method to develop understanding of addition with decimal numbers. Problem Solving ensure pupils have	opportunities to apply knowledge in a variety of contexts and problems (exploring cross curricular links) to deepen understanding.
		opportunities to apply knowledge in a variety of contexts and problems (exploring cross curricular links) to deepen understanding.	
Problem Solving ensure pupils have opportunities to apply knowledge in a variety of contexts and problems (exploring cross curricular links) to deepen understanding.	Compact written method Extend to numbers with at least four digits.		
- • © (®) \quad60 300	7 1 5 1 6 6		
	Children should be able to make the choice of reverting to expanded methods if experiencing any difficulty.		
	Extend to two places of decimals (same number of decimals places) and adding several numbers (with different numbers of digits). $72.8+54.6127 .4$		
	Problem Solving ensure pupils have opportunities to apply knowledge in a variety of contexts and problems (exploring cross curricular links) to deepen understanding.		

Vocabulary
 Hundreds, tens, ones, estimate partition, recombine, difference, decrease, near multiple of 10 and to one thousand,
 Vocabulary (Mathematics
 Mastery
 Columnar addition, formal written
 methods, numeral, place holder,

Common misconceptions

Pupils are sometimes confused that addition is
associative i.e. $3+1=4$ and $1+3=4$. If they were to understand this concept they would find it much easier o recall the addition facts.

* If teachers use the phrase 'near multiple of ten' the children are often confused and believe that they
should be multiplying a number.
* If they understand the term correctly then they might still struggle with compensating, not knowing whether o add or subtract. E.g. 46+19 =
$46+20-1$ often confused as
$46-20+1$
Intervention Challenge - How many ways can you make 20 by adding 3 numbers together? Demonstrate the associative rule in order to make their working more efficient.
Demonstrate what is happening on a number line.
Use simpler terms to describe the operation e.g. 'add ten and take one away'.

Vocabulary

add, addition, sum, more, plus, increase, sum, total, altogether double, near double, how many more to make...? how much more? ones boundary, tens boundary, hundreds boundary, thousands boundary, tenths boundary,
hundredths boundary, inverse, how many more/fewer? equals sign, is the same as, decimal (places),

Vocabulary (Mathematics

 Mastery)Associative law

Common misconceptions

Pupils sometimes begin adding with the left hand column first.
*Not understanding the concept of a 'carry' when a number totals more than ten, hundred etc.
e.g.
$\begin{array}{r}99 \\ 101 \\ \hline\end{array}$
$\frac{101}{1910}$
1910
*Pupils find it difficult to add when a zero is involved.
*They might not record a zero in an answer, leading the following situation
103
$\frac{406+}{59}$
ntervention These pupils could carry out more examples using Base Ten pieces and then linking each practical step to a recorded step.
*Estimate the answer and check that their answer is *Estimate the answer and
'They should realise that it means adding 'nothing' When they have an answer of zero, they often need to be reminded to record it
tens of thousands boundary,
Also see previous years
Vocabulary (Mathematics Mastery)

Common misconceptions

${ }^{*}$ As numbers get larger, pupils miscalculate because of a lack of understanding of the place value of numbers. e.g.
1163
$\frac{12123}{23753}+$
Some pupils will not realise that they will have o add a 'carried' number.
Intervention Estimation - Pupils must learn to estimate - This way they will know when they have made an error.

Vocabulary

See previous years
Vocabulary (Mathematics

Mastery)

Brackets, equivalent expression numbers to ten million, order of operations,

Common misconceptions

*Unless a pupil has a good understanding of place value they will continue to make mistakes with column addition. Such errors are often dismissed as careless mistakes, when the pupil in fact has a fundamental weakness in their understanding. *When adding with decimals such weaknesses are highlighted because of the 'decimal point'.
Intervention Estimation - to see when they have made an error.
*Add numbers to one and then two decima places to begin with. Use the example of money to teach the concept e.g.
£3.12 +
$£ 4.15$
Then extend so that a 'carry' is required
Give the children some completed questions to mark. All questions need to be written horizontally as well as in column form. Include incorrect answers

Vocabulary

Hundreds, tens, ones, estimate partition, recombine, difference, decrease, near multiple of 10 and 100, inverse, rounding, column subtraction, exchange Vocabulary (Mathematics
Mastery)
Common misconceptions If teachers use the phrase near multiple of ten' the children are often confused and believe that they should be multiplying a number If they understand the term correctly then they might still struggle with compensating, not knowing whether o add or subtract. E.g. 46-19 =
$46-20+1$ often confused as
46-20 - 1
Intervention Demonstrate the method on a number line.
*Use simpler terms to describe the operation e.g. 'take ten away and add one'.
*Encourage pupils to map out their calculations on their own number lines. This will help them to visualise what is happening and enable them to work more efficiently mentally.

Vocabulary

add, addition, sum, more, plus increase, sum, total, altogether, double, near double, how many more to make..? how much more? ones boundary, tens boundary, hundreds boundary, thousands boundary, tenths boundary,
hundredths boundary, inverse, how many more/fewer? Equals sign, is the same as.

Vocabulary (Mathematics

Mastery)
Common misconceptions Pupils sometimes begin subtracting with the left hand column first.
*In tens and units and other formal vertica
subtraction calculations, children sometimes take the smaller unit number from the larger, regardless of
whether it is part of the larger or smaller number.
e.g. 945

237

ntervention Practise using base ten materials and alk through the calculation.
*Teach composition, being careful to use the correct ocabulary.
Demonstrate what is happening when we
decompose, on an OHP with base ten materials.
Show the tens and hundreds 'moving'.
Teach composition using the expanded layout to begin with. This will help pupils who do not have a secure knowledge of place value e.g. $64-28=$

5014

20 -

Vocabulary
 tens of thousands boundary
 Vocabulary (Mathematics

 Mastery)
Common misconceptions Children will have

 been taught to use a number line and should be able to visualise this mentally. Some pupils May fail to recognise the steps they need to take and ail to add up 'the steps' at the end.*Misconceptions occur when decomposing from
e.g. 9000 -

3654
Some pupils will attempt subtraction calculations using the formal written method, failing to recognise that it would be more efficient to calculate the answer mentally
*Misconceptions occur when pupils (and teachers) use inaccurate language.

e. 2367

1265
When talking about 2000-1000 they may refer to it as $2-1$.
Intervention Work with number lines and counting up' to find a difference.
*Give pupils a range of subtraction questions and ask them whether they would be better answered mentally or by a written method. Always refer to the digits accurately i.e. 'take two hundred from three hundred

Vocabulary
See previous years
Vocabulary (Mathematics
Mastery)
Numbers to ten million, order of operations,

Common misconceptions Subtraction

involving zeros cannot be done.

*That calculations such as the following cannot be done
27
*Pupils who cannot do these have not got a sufficient understanding of exchanging. *Unless a pupil has a good understanding of place value they will continue to make mistakes with column subtraction. Such errors are often dismissed as careless mistakes, when the pupil in fact has a fundamental weakness in their understanding. When subtracting with decimals such weaknesses are highlighted because of the 'decimal point. Intervention Revise decomposition. If necessary, reinforce the method using base ten materials on an OHP or by using a power point presentation (such presentations can be found using a general search on the internet) *Estimation - Pupils must learn to estimate This way they will know when they have made an error.
*Subtract numbers to one and then two decimal places to begin with. Use the example of money to teach the concept e.g. $£ 6.32$

$$
£ 4.11-
$$

Then extend so that decomposition is required *Give the children some completed questions to mark. All questions need to be written horizontally as well as in column form. Include incorrect answers.

Mastery)
Product, multiples of four, eight,
fifty and one hundred, scale up

Common misconceptions
 See Year 4/5

Intervention See Year 4/5
Children may need to go back to multiplication as an array, or repeated addition, to gain security with the notion of multiplication.

Vocabulary

Factor, Multiplication facts (up to
12x12), division facts, inverse,
derive
Vocabulary (Mathematics Mastery)
Multiplication facts (up to 12×12)
division facts, inverse, derive

Common misconceptions
 \section*{See Year 5}

Intervention See Year 5
Play 'Round the World'; One child stands behind the chair of another, the only 2 that can answer a question given. Should the standing child answer first, then move to next chair - aiming to get around the whole class (the world) Should the seated child answer first, then swap places and continue.

Vocabulary

cube numbers, prime numbers,
square numbers, common factors
prime number, prime factors
composite numbers
Vocabulary (Mathematics
Efficient written method factor pairs, composite numbers, prim number, prime factors, square number, cubed number, forma written method

Common misconceptions Not understanding hat x 10 and $\times 10$ again, is the same as $\times 100$.
'Add a zero' = limited understanding
*Not understanding 'lots of' and 'groups of' meaning the same.
*Children are introduced to formal written methods before they fully understand the concept, so it becomes a test of their memory to remember the 'rule'. No strategies to rely upon when they are 'stuck'. *Problems with place value can cause difficulties with written work ntervention Label chairs TH, H, T, U-choose children to sit, holding a digit card. When multiplying by 10/100/1000, the children move required no' of spaces along chairs. Additional children will be needed holding 'zero' cards as spare chairs become available from the units. Question pupils as to their value, what value do they have now they've moved? How many times larger are they?
Find links between tables.
*Use a multiplication grid and complete the easier questions
*Learn the square numbers $(4 \times 4,5 \times 5$ etc...) All of the tables can be reduced to just a few facts. Games requiring tables knowledge.
*When introducing multiplication with larger numbers, revert back to a learned written method. Move to a more formal method when secure. *Partition numbers and deal with them in parts (grid method). Some children won't advance written methods beyond this.
*Count multiples of a number along counting
sticks, then the corresponding multiples e.g. 3,6 $9 \quad 30,60,90 \quad 0.3,0.6,0.9$

ocabulary
 See previous years

common factor
Vocabulary (Mathematics
Mastery)
Common factors, common
multiples

Common misconceptions

Misunderstanding the concept of making a number 10/100/1000 times bigger, prefer to learn 'add a zero'. *Causes difficulties when working with decimal numbers and fractions. *Children ignore decimal point, perform calculation, then 'count how many digits after the point'. Effective shortcut, but difficulty when applying to mental work - encourage 'why does it work?'
*Children introduced to formal written strategy too early, when 'stuck' reach for a calculator because have no strategy of their own.
*Place value errors when performing written calculations can cause problems for even able pupils.
*Children are taught to multiply single digits and count the number of zeros. $20 \times 50=100$ is a common mistake as children don't know what to do with the 'extra' zero
Intervention See year 5 Chair activity
*Encourage the children to approximate first, e.g 4.92×3.1 is approx. 5×3, so answer should be approx. 15. Start with mental strategies first 25 $\times 0.4$ is 10 times smaller than 25×4, i.e. 10 times smaller than 100, $=10$
*Use the 'grid method' (See supplement of examples in NNS) as it is based upon partitioning, with which the pupils will be extremely familiar. It is worth showing the pupils practically, with cubes, that multiplying the parts is the same as multiplying by the whole number in one step
*Use 20×5 as a key fact and then extend to 20 $\times 50$ which is $10 x$ bigger.
Twenty times five is one hundred
Twenty times fifty is one thousand
Write the connected number sentences one
above the other,
$20 \times 5=100$
$20 \times 50=1000$

DIVISION	DIVISION	DIVISION	DIVISION
Year 3	Year 4	Year 5	Year 6
$\div=$ signs and missing numbers. Continue using a range of equations as in year 2 but with appropriate numbers. SEN LAPs share objects with concrete materials first. Grouping - How many 6 's are in 30 ? $30 \div 6$ can be modelled as: Becoming more efficient using a number line. Children need to be able to partition the dividend in different ways. $48 \div 4=12$ Remainders $49 \div 4=12 \mathrm{r} 1$	$\div=$ signs and missing numbers Continue using a range of equations as in year 3 but with appropriate numbers. Sharing, Grouping and using a number line Children will continue to explore division as sharing and grouping, and to represent calculations on a number line until they have a secure understanding. Children should progress in their use of written division calculations: using tables facts with which they are fluent; experiencing a logical progression in the numbers they use, for example: 1. Dividend just over $10 x$ the divisor, e.g. $84 \div 7$ 2. Dividend just over $10 x$ the divisor when the divisor is a teen number, e.g. 173 $\div 15$ (learning sensible strategies for calculations such as $102 \div 17$) 3. Dividend over $100 x$ the divisor, e.g. $840 \div 7$ 4. Dividend over $20 x$ the divisor, e.g. $168 \div 7$ All of the above stages should include calculations with remainders as well as without. Remainders should be interpreted according to the context. (i.e. rounded up or down to relate to the answer to the problem)		$\div=$ signs and missing numbers Continue using a range of equations but with appropriate numbers Sharing and Grouping and using a number line (SEN) Children will continue to explore division as sharing and grouping, and to represent calculations on a number line as appropriate. Quotients should be expressed as decimals and fractions Written methods - long and short division E.g. $\overline{1504 \div 8}$

Sharing - 49 shared between 4 . How many left over? Grouping - How many 4s make 49. How many are left over?

Place value counters can be used to support children apply their knowledge of grouping. For example: $60 \div 10$ = How many groups of 10 in 60 ? $600 \div 100=$ How many groups of 100 in 600?

Problem Solving ensure pupils have opportunities to apply knowledge in a variety of contexts and problems (exploring cross curricular links) to deepen understanding. . Sharing, Grouping and using a number line Children will continue to explore division as sharing and grouping, and to represent calculations on a number line until they have a secure understanding.
Coxperincing a fluent

1. Dividend just over $10 x$ the divisor, e.g. $84 \div 7$
2. Dividend just over $10 x$ the divisor when the divisor is a teen number, e.g. 173
$\div 15$ (learning sensible strategies for calculations such as $102 \div 17$)
3. Dividend over $20 x$ the divisor, $168 \div 7$
the above stages should include calculations with remainders as well as without Remainders should be

$$
\begin{aligned}
& \frac{10+t i n a s}{7 \times 100}=700 \\
& 7 \times 10=70 \\
& 7 \times 20=140
\end{aligned}
$$

Written methods - Formal short division should only be introduced once children have a good multiplication of division, its links with target nut and the idea of counting up to find

Short division to be modelled for understanding using place value counters as shown below. Calculations with 2 and 3-digit dividends. E.g. fig 1

Alongside pictorial representations and the use of models and images, children should progress onto short division using a bus stop method

Place value counters to support knowledge of grouping. Reference should be made to the value of each digit in the dividend.

Each digit as a multiple of the divisor

'How many groups of 3 are there in the hundreds column?'
'How many groups of 3 are there in the tens column?'
'How many groups of 3 are there in the units/ones column?'

Written methods - Continued as shown in Year 4 , leading to the efficient use of a formal method.

The language of grouping to be used (see link from fig. 1 in Year 4) E.g. $1435 \div 6$

Children begin to practically develop their understanding of how express the remainder as a decimal or a fraction.

Ensure practical understanding allows children to work through this (e.g. what could I do with this remaining 1? How could I share this between 6 as well?)

Problem Solving ensure pupils have opportunities to apply knowledge in a variety of contexts and problems (exploring cross curricular links) to deepen understanding
E.g. $2364 \div 15$

Problem Solving ensure pupils have opportunities to apply knowledge in a variety of contexts and problems (exploring cross curricular links) to deepen understanding.

Vocabulary
 See Y1 and Y2
 Inverse
 Vocabula
 Product, multiples of four, eight,
 fifty and one hundred, scale up

Common misconceptions Children not see link

 between the two operations, need more experience of chunking, as well as sharing.Need to be taught alongside each other - not separately. Children think that $2 \div 4$ is the same as $4 \div 2$.
ntervention Show children physically that $2 \div 4$ cannot be the same as $4 \div 2 \ldots$ use a 2 m length of wool, cut into 4 equal pieces. Use a 4 m length of wool, cut into 2 pieces - are they the same?
Lots of examples using cubes to show that
multiplication and division are the inverse of each other.
*When teaching the chunking written method, model with cubes every step of the written process.

When children have conceptual understanding and

 fluency using the bus stop method without remainders, progress onto 'carrying' their remainder across to the next digit.Problem Solving ensure pupils have opportunities to apply knowledge in a variety of contexts and problems (exploring cross curricular links) to deepen understanding.

Vocabulary
 see years 1-3, divide, divided by divisible by, divided into share between, groups of, factor, facto pair, multiple times as (big, long, wide ...etc) equals, remainder,
 quotient, divisor inverse
 Vocabulary (Mathematics
 Mastery)

Common misconceptions Not understanding that division is grouping as well as sharing. *Lack of tables knowledge.
*Not understand the concept of 'inverse'
Not understanding what the remainder represents, need to see calculation in concrete way (cubes left over after division ${ }^{}$ Ignoring the context of questions - should remainder be rounded up or down? Intervention Practise repeating multiplication tables, games such as 'round the world' (see Year 6).
*Show the pupils, physically, that 'groups of' (multiplication) and division are the same, using cubes.
*Use multiplication grid for 'facts', so not slowing down division process
*Practical examples where children need to put objects in boxes (egg boxes good), alongside written form of the division question.

Vocabulary

common factors, prime number, prime factors, composite numbers, short division, square number
cube number
inverse, power of
Vocabulary (Mathematics

Mastery)

Efficient written method, Factor pairs, composite numbers, prime number, prime factors, square number, cubed number, forma written method

Common misconceptions Pupils do no understand that $\div 10$ and then $\div 10$ again, is the same as $\div 100$.
See Year 6
*Pupils are introduced to written method before fully understanding the concept of grouping or chunking'. *Need more concrete examples.
*When dealing with remainders, pupils have little understanding of how to represent as a fraction or a decimal.
Intervention Label chairs $\mathrm{TH}, \mathrm{H}, \mathrm{T}, \mathrm{U}$ and choose children to sit, holding a digit card. When dividing by 10/100/1000, the children move required no. spaces along chairs. Child as zero units 'drops off' end. NOTE; only used when units digit is zero. Question pupils as to their value, what value do they have now they have moved seats? How many times smaller are you?
*Ensure that the pupils relate the division to multiplication; $27 \div 3 \ldots$ how many chunks of 3 are there in 27 ?' *Count up in 3s. Less able children use a tables square for multiplication facts, so not to slow down understanding of the division process.

Vocabulary

see years 4 and 5
Vocabulary (Mathematics
Mastery)
Common factors, common multiples

Common misconceptions Lack o

 understanding that division is grouping as well as sharing.*Lack of tables knowledge.
*Ignore decimal point when calculating, then simply slot back in'. *Comes from over generalisation of adding decimals (inc. above)
*Misunderstand the concept of making a no 10/100/1000 times smaller, prefer to learn 'knock off a zero'. *When the no. ends in a different digit, simply knock that off. Ignore decimal point, or 'move it' - often taught by parents!
Intervention Lots of activities requiring constan repetition of tables, play 'Round the World'; One child stands behind the chair of another, the only that can answer a question given. Should the standing child answer first, then move to next chair - aiming to get around the whole class (the world) Should the seated child answer first, then swap places and continue.
*See Year 5.
*When operating with decimal numbers, and whole numbers where units digit is not zero, choose another child to sit and hold the 'decima point' card. They will NEVER move! *Additiona chairs will be required for the tenths, hundredth columns.

