ArkCurriculum+

Year 3 Unit 7: Deriving multiplication and division facts

Week 1: Using place value

Year 3 Unit 7: Deriving multiplication and division facts

Lesson 1: Multiplication structures

- To compare multiplication structures
Lesson 2: Multiplying with place value
- To multiply numbers by 10 and 100 using place-value charts
Lesson 3: Linking place value and multiplication
- To understand the values of adjacent place-value columns

Lesson 4: Dividing by ten

 using place value- To divide multiples of 10 and 100 by 10 using place value
Lesson 5: Multiplying and dividing by ten or 100
- To multiply and divide by 10 and 100 using place value

ArkCurriculum+

Year 3 Unit 7: Deriving multiplication and division facts

Lesson 1: Multiplication structures

Exploring the big picture

What maths can you see?

What maths knowledge might anybody in the picture need?

Learning to compare multiplication structures

efficient

Comparing different structures for the same calculations

Zara has three dogs. Each dog eats five biscuits. How many biscuits do the dogs eat altogether?

Comparing different structures for the same calculations

Michael gives his dog three times as many biscuits as Zara gives to one of her dogs. How many biscuits does Michael's dog get?

Matching word problems

- Solve the word problems, using bar models to help you identify the calculations.
- Match the word problems with matching calculations.
- Identify which problem has an 'equal parts' structure and which has a 'times greater' structure.

Learning to compare multiplication structures

Match the word problems with the same calculations One has been done for you

Ella bought five packs of Christmas cards. If each pack contained five cards, how many cards did she buy altogether?

Each day Milo eats two sandwiches for his lunch. After three days, how many sandwiches has he eaten?

Sam bought two packs of erasers with four erasers in each pack. How many erasers did Sam buy?

The teacher asked children to work in groups of three. There were exactly ten groups. How many children in the class?

Stu spent £2 on a present for his sister. He spent three times as much on a present for his mum. How much did his mum's present cost?

On my first go at a new game, I only scored three points! The second time, my score was ten times greater. How many points did I score the second time?

One Sunday, Arun found five conkers in his Grandma's garden. The week after, he found five times as many. How many conkers did he find the second time?

Four children walked to school on Monday. Twice as many children walked to school on Tuesday. How many children walked on Tuesday?

Comparing strategies

How many ways could you solve these calculations?

$$
4 \times 2)(5 \times 5)(3 \times 2)(3 \times 10
$$

Learning to compare multiplication structures

Applying strategies to solve word problems

- Solve the word problems, using bar models to help you identify the calculation.
- Identify the structure of each problem.
- Choose a strategy to solve it.

A sunflower was 3 cm tall in June Then it grew six times taller in July. How tall was the sunflower in July?

Solving word problems with different structures
For each problem...
-Identify the structure ('equal parts' or 'times greater')
-Choose a strategy to solve the problem

My Lego kit is designed to make three cars. If each car has four wheels, how many wheels should
the kit have
altogether?

Nick ran 5 m in the egg and spoon race before his egg fell off. Amna managed to run ten times as far before her egg fell off. How far did Amna run before her egg fell off?

There are 8 girls in my class. There are twice as many boys as girls. How many boys are there in my class?

The school bus stops five times before it gets to school. Each time it stops, three people get on. How many people get on altogether?

Comparing the efficiency of strategies

Nick ran 5 m in the egg and spoon race before his egg fell off. Anna managed to run ten times as far before her egg fell off. How far did Anna run before her egg fell off?

ArkCurriculum+

Year 3 Unit 7: Deriving multiplication and division facts

Lesson 2: Multiplying with place value

'Follow Me' multiplication game

START 3×4	$\begin{gathered} 15 \\ \text { Glotsof } 3 \end{gathered}$	$\begin{gathered} 18 \\ \text { Five fours } \end{gathered}$	20	$\underset{4 \text { groups of } 4}{32}$	${ }_{\text {Threetrres }}$
9	28	21	8	0	27
7×4	Seventrees	210 sof4	3×0	Nine thres	10×3
30	32	15	24	24	6
${ }_{8 \times 4}$	${ }^{3}$ loso ${ }^{\text {f } 5}$	Fourtimes six	Eightures	Twotrres	FINISH

Learning to multiply numbers by ten and 100 using place-value charts

Using place value to multiply by ten

A bike can carry one person to Silverstone. How many people can travel to Silverstone on five bikes?

$5 \times 1=$

Using place value to multiply by ten

80
408

A minibus can carry ten times as many people as a motorbike. How many people can travel to Silverstone in five minibuses?

Using place value to multiply by ten

A minibus can carry ten times as many people as a motorbike. How many people can travel to Silverstone in five minibuses?

$$
\begin{aligned}
& 5 \times 10=5 \times 10=5 \times 10=5 \times 10=5 \times 10=
\end{aligned}
$$

$$
5 \times 10=
$$

Making parts ten times greater

Draw Dienes blocks on the place-value chart to explore the effect of making parts ten times greater.
Pupil A: Select a number card and create the value in Dienes ones on the place-value chart.
Pupil B: Multiply the value by ten, replacing the Dienes ones with Dienes tens. Say the calculation aloud.
Pupil A: Multiply the value by ten again, replacing the Dienes tens with Dienes hundreds. Say the calculation aloud. Swap roles and repeat the exercise.

Hundreds	Tens	Ones

Making parts ten times greater

Hundreds	Tens	Ones

Hundreds	Tens	Ones

Hundreds	Tens	Ones

Hundreds	Tens	Ones

Using place value to multiply by ten and 100

Using place value to multiply by ten and 100

Using place value to multiply by ten and 100

A double-decker bus carries 100 times as many people as a motorbike. If five motorbikes can carry five people, how many people can travel to Silverstone in five buses?

Learning to multiply numbers by ten and 100 using place-value charts

Making parts ten and 100 times greater

Explore any patterns that you can see. What might be happening? Why is that?

| $6 \times 1=$ |
| :---: | :---: | :---: | :---: |
| $6 \times 10=$ |
| $60 \times 10=$ |
| $6 \times 100=$ |\quad| Hundreds | Tens | Ones |
| :--- | :--- | :--- |
| | | |
| | | |

Learning to multiply numbers by 10 and 100 using a place value chart.

Making parts 10 and 100 times greater

Represent each calculation using Dienes blocks on a place value chart and solve the missing number problems.

What patterns can you spot and what happens to the Dienes blocks?

[^0]
Sharing patterns

- What happens when we multiply by ten?
- What happens when we multiply by ten then multiply by ten again?
- How does this compare to when we multiply by 100 ? Why is that?

Year 3 Unit 7: Deriving multiplication and division facts

Lesson 3: Linking place value and multiplicatio

Multiplying by ten and 100

Work with a partner on this activity.

- Represent each calculation on a place-value chart using Dienes.
- Afterwards, solve the calculations.
- Think about the patterns you noticed in the previous lesson and discuss any new patterns you notice.

Learning to understand the values of adjacent place-value columns

Multiplying two-digit numbers (beyond multiples of ten)

What happens to the digits when you multiply by 10 ?

Exploring the relationship between place-value columns

Choose a pair of calculations.
Pupil A: Represent one calculation with Dienes on a place-value chart.
Pupil B: Represent the other calculation with Dienes on the place-value chart.

Both: Compare the two calculations.

Hundreds	Tens	Ones

I make the ones ten times greater so ...

The digits from the ones ...
 greater so ...

Learning to know that adjacent place value columns are ten times greater in value

Exploring the relationship between place value columns

Choose a pair of calculations. Each represent one of the calculations with Dienes on a place value chart. Compare the two calculations.

What do you notice? What's the same and what's different?

13×10 and 31×10	41×10 and 14×10
51×10 and 15×10	51×10 and 15×10

Mathematics Mastery

Representing with place-value counters

Hundreds	Tens	Ones

Learning to understand the values of adjacent place-value columns

Multiplying two-digit numbers using place value

Draw a place value chart.
Represent each calculation with place value counters before completing the written calculation.

Hundreds 100	Tens 10	Ones

Learning to know that adjacent place value columns are ten times greater in value

Multiplying 2-digit numbers using place value
Draw a place value chart on your whiteboard
Represent each calculation using place value counters.
Write the digits beneath the counters to show the number that is represented - remember the place holders!
Complete the written calculations after you represent each

$17 \times 10=$	$21 \times 10=$
$=19 \times 10$	$=24 \times 10$
$23 \times 10=$	$=33 \times 10$
$=18 \times 10$	$32 \times 10=$

Copyright © Mathematics Mastery 2020

What's the same and what's different?

Hundreds	Tens	Ones
	2	1
2	1	0

Year 3 Unit 7: Deriving multiplication and division facts

Lesson 4: Dividing by ten using place value

Multiplying two-digit numbers by ten

Complete the calculations using place-value counters and a place-value chart.

$$
\begin{aligned}
& 21 \times 10= \\
& =14 \times 10 \\
& 22 \times 10=13 \times 10 \\
& =15 \times 10 \\
& 12 \times 100=
\end{aligned}
$$

Learning to divide multiples of ten and 100 by ten using place value
ten times less
division

ten times fewer

value

inverse

Connecting multiplying and dividing by ten

If I know this, what else do I know?

$$
4 \times 2=8
$$

Connecting multiplying and dividing by ten

Hundreds	Tens	Ones

Ten times less as the inverse of ten times greater

Choose a digit 1-9. Represent the value using Dienes, recording the digits in the correct columns underneath.
Pupil A: Represent making the number ten times greater. Explain what you have done.
Pupil B: Represent making the newly created number ten times less. Explain what you have done.
Both: Describe what has happened to the value of the number. What do you notice?

When we multiplied / divided by ten, the value became ...
When we multiplied / divided by ten the digits ...
When we multiplied / divided by ten the place holder ...

Dividing larger numbers by ten

Five double-decker buses can carry 500 people to Silverstone. We know that minibuses carry ten times fewer people. How many people can travel to Silverstone in five minibuses?

Dividing larger numbers by ten

Five double-decker buses can carry 500 people to Silverstone. We know that minibuses carry ten times fewer people. How many people can travel to Silverstone in five minibuses?
$500 \div 10=$

88888

Learning to divide multiples of ten and 100 by ten using place value

Making parts ten times less

- Take a set of calculations and solve them using Dienes on your place-value chart.
- Each time, make the value ten times less.
- Record the digits in the correct columns before writing the equation in your book.
What do you notice about the digits each time you divide by 10 ? What patterns do you spot?

$$
100 \div 10=
$$

$$
=10 \div 10
$$

$$
110 \div 10=
$$

Dividing larger numbers by ten

Draw a place value chart on your whiteboard.
Choose a row of division calculations and represent each division using Dienes blocks on your chart.
What happens to the value of the number? What happens to the digits each time?

$300 \div 10=$	$30 \div 10=$	$330 \div 10=$

Sharing patterns

What patterns did you spot?

Year 3 Unit 7: Deriving multiplication and division facts

Lesson 5: Multiplying and dividing by ten or 100

Dividing by ten using place-value counters

Complete the calculations using place-value counters and a place-value chart.

$6,000 \div 10=$
$=600 \div 10 \quad=60 \div 10$
$=7,000 \div 10 \square 700 \div 10=$
$70 \div 10=$

Learning to multiply and divide by ten and 100 using place value

multiply

times as many

times fewer

divide

times greater

times more

times less
inverse

Relating multiplying by 100 to dividing by 100

How could you represent this calculation with Dienes and place-value counters?

$$
3 \times 100=
$$

Relating multiplying by 100 to dividing by 100

$3 \times 100=300$			
$3 \times 10 \times 10=$	Hundreds	Tens	Ones a

Dividing by 100

Pupil A: Select a calculation and represent it with place-value counters, writing the digits underneath.
Pupil B: Divide by 100, representing this with place-value counters and write the digits underneath.

Both: Explain what happened to the value of the number, each digit and the place holders.

Hundreds	Tens	Ones
100100		
3	0	0
		1
		1

Dividing by 100

Pupil A: Choose a calculation and represent the calculation with place value counters, writing the digits underneath

Pupil B: Divide by 100, representing with place value counters and writing the digits underneath

Both: Discuss what happened to the value of the number, each digits and the place holders

Look out for patterns. What did you notice?

$700 \div 100$	$600 \div 100$	$200 \div 100$
$300 \div 100$	$800 \div 100$	$400 \div 100$
$500 \div 100$	$100 \div 100$	$900 \div 100$

Multiplying and dividing by ten and 100

What patterns did you notice?

Hundreds	Tens	Ones

Learning to multiply and divide by ten and 100 using place value Multiplying and dividing by ten and 100

Complete the calculations, representing them with Dienes or place-value counters.

$$
\begin{gathered}
=13 \times 10 \\
\hline 70 \div 10= \\
\hline=600 \div 100
\end{gathered}
$$

Hundreds 100	Tens 10	Ones

Multiplying and dividing by 10 and 100
Solve the calculations, representing each with place value counters or Dienes on a place value chart.

$400 \div 10=$	$60 \times 10=$	$=500 \div 100$
$90 \div 10=$	$=6 \times 100$	$=170 \div 10$
$=72 \times 10$	$=23 \times 10$	$630 \div 10=$

Celebrating success and addressing misconceptions

How did you solve the calculations from the Independent Task?

[^0]: $\stackrel{\square}{\square}$
 $\bullet \bullet \bullet \bullet \bullet \bullet \bullet$

